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As is well known the Tchebycheff polynomial of degree n minimizes the
sup norm over all monic polynomials with n simple zeros in [-I, + I). B. D.
Bojanov [1. Approx. Theory 26 (1979), 293-300J recently investigated the situation
for polynomials with a full set of zeros of higher multiplicities. In this paper we
generalize these results to extended complete Tchebycheff systems.

INTRODUCTION

Recently in an interesting paper Bojanov [2] extended the concept of a
TchebychefT polynomial to the case where the polynomials to be analyzed
may have zeros of order larger than one. We propose to generalize this result
to extended complete TchebychefT systems. Here one does not have the
factoring properties of polynomials which play such a prominent role in the
proof for polynomials.

Specifically let {,ui + l}f=l be a set of positive integers where N + 1 =
I:f= l(,ui + I) and let {vil7:ol form an extended complete TchebychefT system
of order M + 1 = max,.;;j<:;K{,uj} with vo(x) == 1. This means that, for each i
with 0 ~ i ~ N + 1, {Vj}~=o C CM[O, 1] form an extended TchebychefT system
of order M + 1; that is, v = I:~=o ajvj and I:~=o aJ > 0 ~ v has at most i
zeros in [0, 1] counting multiplicities up to order M + 1 and, for 0 ~ X o <
Xl < ... < Xi ~ 1,

(
0, 1,..., i ) . .

V = det{v.(xj); 0 ~ S,] ~ I} > O.
XO"",x i

Define L1 K to be the open simplex,

L1 K= {z=(z!,,,,,ZK):O<ZI < ... <ZK < I}.

* Partially written while H. L. Loeb was visiting the Technion-Israel Institute of
Technology, Haifa, Israel.
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For each zEJ K , let v(.;z) be the unique element of the form

N

V=VN+1+Laivi
i=O

for which

189

(Ia)

(j = 0, 1,... ,pJ (i = 1,... , K). (1 b)

If IIJII = maxXE[0.11IJ(x)l, the main problem we consider is how to charac­
terize the solution of

min II v(·, z)ll·
zEdK

(Ie)

The raison d'etre for wanting to solve (1) is provided by the following inter­
polation problem. For each z E J K and JE CM[O, 1] let v be the unique
element in the subspace spanned by {v;}7=0 which satisfies

(j = 0, 1,..., PI) (i = 1,... , K).

Then it is well known that

J(X)-V(X)=J~,Z2,Z2,...,ZK_"~] v(x,z),

for xE [0, 1], wheref[z"... ,zK] is a generalized divided difference ofJwith
respect to the system {V;}7~O" Hence it is clear that a good choice for the
interpolating points is the set z which minimizes (Ie). For the case of
polynomials with all Pi = 0, one is referred to [3,6] for a detailed analysis.

OSCILLATING SYSTEMS

We consider first a more general problem. Namely, we are given a set of
positive integers {m;}7= I; an extended complete Tchebycheff system
{v i }7=+0' c CS[O, 1] of order S + 1 = max1"i"n mi with Vo== 1 and with N ==
L~=I mi ; and a set of real numbers {d;}7~~ which yield a sequence

[i= I,...,n+ 1)

with the property sgnei=(-It+;~t'mJ=(-l)Lf~imJ and, in particular,
en+ 1 > 0. Let
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Then among all functions of the form

N

V=V N+ 1 + L a;v;+aO'
;= 1

(2)

we seek to find one with the property that for some (x1"'" X n ) E L1 n and an
EER+,

veX;) = Ed;

V(jl(X;) = 0

(i = 0, 1,... , n + 1),

(j = 1,... , m;; i = 1,..., n),

(3a)

(3b)

where X o == 0 and Xn + 1 == 1.
The purpose of this section is to show that there is exactly one solution to

this problem.
Set

(i= 1,...,N + 1).

From [5, p. 379], it follows that {U;}7}11 form an extended complete
TchebychetT system on [0, 1]. Thus since the system

v(Xo) = Edo,

v(xk) - V(Xk_1) = Eek

V(jl(X k ) = 0

(k=I, ,n+l),

(j = 1, , mk ) (k = 1,..., n)

is equivalent to (3), we can rephrase the problem as follows: Find a function
of the form,

(k = 1,..., n + 1),

N

U=UN + 1 + ~ Q;Ui
i= 1

such that for some x = (x1'"'' x n) E L1 n' and an E >0,

f
Xk

u(x)dx=Eek
Xk-I

U(}l(Xk ) = 0 (j = 0,1,..., mk - 1; k = 1,.... n.)

Hence U satisfies (Sa), (5b) itT the function v given by

.X

v(x):;:::: Edo+ I u(x) dx
. XII

satisfies (3).

(4 )

(Sa)

(5b)

(5c)
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For the extended definition

U* (Ul' ...'UN+ l )
Xt"",XN+ l

of the determinant

(
U1' ...'UN+ I ) .,U = det{ui(xj ); I,J = I, ... , N + I};
Xl,,,,,XN+ l

in case of coincidences among the Xi' one is referred to [5, p. 5].

191

LEMMA 1. For each x = (Xl ,... , X,,) E Lf" there is a unique u of the form
(4) which we designate by u(., x) which satisfies (5b).

Proof Set

U* (;:: ;:: U:+ 1

)

u(x, x)=--------------

U* (~1' "', ~N)
Xl' "', X N

(6)

with XI'"'' xN the sequence obtained from XI , ... , x" by repeating Xj' m j times,
i = I,..., n. It is easy to verify that u(·, x) has the desired properties. For
uniqueness one notes that the difference of two solutions must lie in the liner
span of {u;}7~ I' Thus if the difference is non-zero it can have at most N - I
zeros including mUltiplicities. Hence uniqueness follows. I

Remark 1. For x=(Xl'...,x")ELf,,, and xflx differentiating (6) one
finds

a
-;- u(x, x) = 2

uX i U* (~I'"'' ~N)
XI,,,,,XN

_ U1' (~I'"'' ~N) .U* (~I'"'' ~N+I)] (7)
xI"",XN XI'· ..'XN,X

with the subscript i indicating that all the terms u~mi-I)(Xi) appearing in
U*( ) have been replaced by u~ml)(Xi)'
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We record several by-products of (7):

(k = 1,2,... , i-I, i + 1,..., n), (9)

[(_1)'Hf~,.,mJ] ~:~~', [a~, u(x, xl] Ix~x, > 0

(i = 1,..., n). (10)

(ojoX i ) u(x, x) is of the form

(11)(i = 1,... , n).
o N

oX
i

u(x, x) = j~l aijuj(x)

In our later analysis, the Jacobian of the system (5) will be studied. In this
investigation the signs of certain sub-determinants will playa key role.

LEMMA 2. For 1~ k ~ n + 1 and x E An set

(12)

with

(
0,..., n) (fXi+1 ..)D = (oujox)(x, x) dx: 1= 0,... , n;] = 1,..., n .
1,... , n Xi

Then

(k= 1,... ,n+ 1).

Proof. We first claim that D",(x) '* 0. For if it was zero then there would
be a function u of the form

n 0
U= L ai-;-u(.,x),

1=1 uXI

n

where L a; > 0
1=1

such that

fj u(x) dx = 0
Xj_1

(j = 1,... , k - 1, k + 1,..., n + 1). (13)
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From (8), (9), (10) we conclude that

193

(t = 0, 1,... , mj - 2) (j = 1,..., n) (14)

and that u is not identically zero. Now from (13) it follows that u must also
have a zero in (xj _ l , Xj) (j = 1,..., k - 1, k + 1,..., n + 1). Thus u has at least
N zeros (including multiplicities), which is a contradiction since u is a non­
zero function which is in the span of {u;}7=1' We conclude that Dk(x):t=O.

Next we note that this same argument implies also that if

(j = 1,..., k - 1, k + 1,..., n + 1)

and we replace xj by Yj (j = 0, 1,..., n + 1) in (12), the resulting determinant
is non-zero. By continuity, it is clear that the sign of the determinant remains
constant under these modifications.

Let the intervals of integration in (12) vary in the manner

[Yo, XI] -+ {xtl, [yl' x 2]-+ {x2},..·, [Yk-2' Xk_ l ] -+ {xk-tl,

[xk,Yk+ I] -+ {xd, [Xk+ l' Yk+ 2] -+ {Xu I}"'" [xn,Yn+II -+ {Xn}·
(15)

From (8), (9), (10) we can infer that as the intervals get very small, the
modified determinant, 15k , has the property

A [k-I J
Xj au n JYj+l au ]sgn D k = sgn n -. (X, x) dx n --;-:- (X, x) dx . (16)

)=1 Yj-l ax) )=k Xj ux)

From (10)

(17)

where c j >°for x near Xj (i = 1,..., n). Hence

sgn 15
k
= (111

(_1)1+~J'~i+lmj(_l)ml-l) (fr (_1)1+~J'~i+lmj)
1=1 I=k

= (_l)n-k+ 1(_l)U~1~J~I+lm)(_l )4~1'm1

and

For a given x E L1 n , consider the system of n + 1 differential equations

d [ Xk(S) ] dE(s)d f u(x,x(s»dx =ek---!k
s Xk_l(S) ds

(k=1, ...,n+1) (18)
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in the n + I variables (x(s), E(s)) with the initial conditions: x(O) = x =
(XI"'" xn) and E(O) = 0, where

,Xkj u(x, x) dx =lk
Xk_1

(k=I, ...,n+l).

Note that if we integrate (18) we find that

Xk(S)f u(x, x(s)) dx = ekE(s) + (1 - s)lk
Xk_I(S)

(19)

and thus at s = 1 we get the desired solution to (5). Our problem is to show
that the solution to (18) can be extended to [0,1]. The arguments needed to
demonstrate this follow the pattern established in [4]. Several things have to
be verified. We proceed to do this.

First, (18) can be written as

\-, [fXk(S) au(x, X(S))] dxis) _ e dE(s)

j~1 Xk_'(S) axis) ds k ds

(k = 1,..., n + 1).

The determinant of the left hand side of this system is

ntl

~ Dk(x)(-l)ntk ek
k=1

which by Lemma 2 is non-zero. Next it is easy to check [see (6)] that

(19a)

(20)

(k = 1,..., n + 1).

Thus solving (19a) for dEjds, one finds

O
mink 11kl dE L (-l)n tkh Dk(x) maxk 11kl

< I I ~-d = '" (l)ntk ( ) ~ . I I (21)maxk ek s L... - ekDk x mink ek

From (21) it follows that E(s) is bounded, positive, and monotone
increasing as s varies over (0, 1]. Hence from (19) and the fact that eklk > 0
we see that there is no sequence of solutions {x(sJ, E(sv)} where {svl c (0, 1]
so that x(sv) -. aLin' I Thus the essential properties have been verified and the
solution can be extended to [0, 1] (for more details see [1,4 J).

Before proceeding with the uniqueness portion of the proof it is interesting

I By the usual argument since u(x. x(s,,) has a full set of zeros, its coefficients are bounded.
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to note that integrating (21) between 0 and 1 yields a generalized de la
Vallee Poussin system of inequalities.

For each x E L1 n , let F(x) = (x(I), E(l)), that is, the solution to the
differential equations at s = 1 with the initial condition x(O) = x and
E(O) = O. Since L1 n is connected and since by the theory of differential
equations, F is continuous, F(L1 n) is connected. Further if (x, E) is a solution
to (5) then it is easy to check that x(s) == x and E(s) = sE is a solution to the
system of differential equations with initial condition x(O) = x and E(O) = 0
and by uniqueness it is the only solution. Hence F maps ..1 n onto W where

W = {(x, E): (x, E) solves (5), E> O}.

Thus W is connected. For each (x, E) E W the Jacobian of the system (5)
evaluated at (x, E) is non-zero by (20). The Implicit Function Theorem
implies then that each point of W is an isolated point. Hence W consists of
just one point; that is, the solution to (5) is unique.

Summarizing,

THEOREM 1. For a given set of positive integers {m;}7= I N = I:7= 1m;

and a set of {d;}7~~ where the corresponding {e;}7~i satisfy ei(-l)2:Y~imj > 0
there is a unique v(x) of the form (2) such that for some unique x =
(x 1 , ••• , X n) E .1 n' v satisfies (3).

We now return to the main problem as defined in (1).

LEMMA 3. There is a unique function v(·, z*) of the form (la) which
satisfies (1 b) and for some set,

also satisfies

Ilv( , z*)11 = (_I)N+I-2:}~'(llj+I) v(t
i
, z*) (i = 0, 1,... , K) (22)

with 0 = to < zt < t l ... < tK _ 1<z; < tK = 1, with N = I:~= 1(!J.j + 1) - 1.

Proof In Theorem 1 for i = 0, 1,... , 2K, set

and n = 2K - 1.

d;=O

= (-It+ 1-2:j(!,(llj+ I)

if i is odd

if i is even
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Further define for i = I,..., 2K - 1 "'" n

=1

if i is odd

if i is even.

Finally delete all i such that m j == O. If m j, ,"" mjl are the remaining
multiplicities where i\ < i2 < ... < i{, then let m j == m ij , j = 1 .. , t. N "'"

L:j=l mj'

lt is easy to verify that the resulting Ie;} have the property that
e;(-I)rJ~imj> O. The result follows directly from Theorem 1, since
(djdx) vex, z*) has at most N zeros.

THEOREM 2. Among all elements of the form (la) which satisfy (1b)
there is exactly one element of minimal norm. This element is the unique
function v(., z*) which satisfies (22).

Proof Let v(·, z) be a candidate for the function of minimal norm. By
Rolle's theorem there is a t j where Zj < t j < zi+1 so that

dv I-(x,z) =0
dx X=li

(i = 1,..., K - 1).

Set x= (X\, ... ,X2K _ 1) = (z\,t\,Z2,...,tK _ 1,ZK)' One now sees that
(dldx) vex, z) satisfies (5b) for the corresponding x with the corresponding
m j as in Lemma 3.

Using this x, and

(i == 1,..., 2K)

as initial conditions for the differential equation (18), with the ej and mi as in
Lemma 3, Eq. (21) becomes

(23)

with £(1) = II v( , z*)II. Note that Theorem 1 implies that the solution of (18)
only depends on the ei and mi , not on the initial conditions; hence if II"I <
£(1) for some k, we would obtain the contradiction that n(dEIds) ds < E(l).
Thus fk =ek, k = 1,..., 2K, and uniqueness follows from Theorem 1.
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